Archives 2022

The Possible Achilles’ Heel of EVs and Energy Storage

  • Battery technology is progressing slowly and advances in lithium-metal are not yet commercially available
  • Federal EV battery incentives pertain to countries with US free trade agreements: Australia, Canada, and Chile
  • Battery supply is constrained by metal mining and production is limited by complex and costly process technologies
  • More research and product production methods are imminently needed

Battery production for electric vehicles should be a concern. For one, the US has neither the resources nor the production capacity to meet the demand of EV manufacturers. Second, as a national security concern, not having the requisite production infrastructure to support energy transformation leaves the US vulnerable to economic decline and energy price increases. Third, to navigate energy transformation it’s imperative to establish battery production for grid stability and resiliency, particularly when introducing renewable energies.

Currently, lithium-ion batteries are the core foundation for EVs and most vehicle manufacturers are planning to transition to all elective vehicles in the near future. California might ban the sale of new cars running only on gasoline by 2035. The issue is the production of EVs is inextricably linked to the availability of batteries that are limited by supply constraints in both battery metals and production capacity. Our focus is on battery supply chains and production.

Battery Supply Chains

The big issue around EV batteries is assuring an adequate supply of materials at a reasonable price.  To better understand the EV supply chain let’s look at the common raw materials namely metals and their associated costs. The four primary metals in a lithium-ion battery commonly used in most EVs are lithium, nickel, cobalt, and manganese. EV batteries use nickel-manganese-cobalt cathodes, with 60% nickel and 20% of cobalt and manganese.

The Possible Achilles’ Heel of EVs and Energy Storage – MarketScale

Energy Transformation Why EVs will Impact the Utility Grid

Energy Transformation: Why EVs will Impact the Utility Grid – MarketScale

With the bipartisan National Electric Vehicle Infrastructure (NEVI) funding fast approaching, what are the implications on energy demand and the utility grid and why is EV charging compounding the complexities of grid transmission and distribution?

Currently EVs account for about 1% of the global vehicle market and according to EV Adoption, there are approximately 2 million EV on the road in the US. According to the Department of Transportation’s Federal Highway Administration, the average vehicle travels approximately 13,500 miles annually and EV efficiency is roughly 3.5 miles per kWh suggesting annual energy consumption of 3,870 kWh. According to the DOE Energy Information Administration, the average US home consumes roughly 10,900 kWh a year. Therefore, an EV would potentially account for the 35% of the average US home’s electric usage.  Most homes can be equipped with a Level 2 EV chargers (240 volts / 50 amps) mitigating any grid impact

EV Charging Grid Impact

Read More

Are Electric Vehicles Worth the Investment?

MarketScale podcast

https://marketscale.com/industries/transportation/are-electric-vehicles-worth-the-investment/

EV Economics

So, what does this EV energy transformation mean to consumers?  Let’s look at a few key factors in evaluating EVs:  economics, driving range, charging time and charging network. For one, it is the understanding of EV economics such as the difference between MPG to miles per kilowatt hour (kWh). Essentially, how far can you drive with a gallon of gas to kWh of energy. According the EPA, the average vehicle fuel efficiency in 2020 was 25.7 MPG. The U.S. Department of Transportation’s Federal Highway Administration states the average person drives around 13,500 milesevery year suggesting an annual fuel cost of over $2,300 at $4.50 per gallon.

The average EV range is approximately 3.5 miles per kWh. One way to assess the economics between MPG and kWh efficiency is to compare the driving costs of traveling 100 miles. With the average fuel cost of $4.50 in the US and 25.7 MPG equates to $17.50.  With an EV achieving 3.5 miles per kWh, the 100-mile traveling cost will depend on whether the EV was charged at home or on a charging network station. According to the Energy Information Administration, the average at home cost is roughly $0.14 per kWh. So, the 100-mile EV travel cost equates to $3.91.

However, if the EV requires charging on a public charging network, the cost is significantly higher. The average kWh cost on public charging networks is approximately $0.42 per kWh ranging from $0.25 from Tesla to $0.33-to-$0.60 on other charging networks. At $0.42 per kWh, the 100-miles travel would cost $12.00 in an EV which is still a 30% savings over conventional vehicles.

Figure 1: 100-Mile Driving Costs

Source: EPA, EIA, Green Econometrics

Read More

Why EVs, Digital Transformation and Crypto will Impact Utility Grid

The US utility grid, comprised of electric generation, transmission (high voltage long distance transport) and distribution (last mile connection to end user) consumes approximately 3.8 trillion kilowatt hours (kWh) with 1.28 trillion kWh in commercial use or roughly 34% of the grid.

In 2021, Electric Vehicles (EV) represented approximately 3% of the registered vehicles in the US. The U.S. Department of Transportation’s Federal Highway Administration states the average person drives around 13,500 miles every year. The average electric car consumes 34.5 kWh per 100 miles. This works out as 0.346 kWh per mile. https://ecocostsavings.com/electric-car-cost-per-mile/ That amounts to 36 billion kWh or 1% of the electric grid.

Vehicle manufacturers are projecting substantial migration to EVs which will increase the impact on the grid. When EVs account for 25% of total vehicles, an additional 7% of grid capacity will be required. 

The required grid buildout will be complicated further by the adding huge numbers of physical EV charging locations. The Federal Government has just allotted $5 billion to assist states that have aggressive charging station construction plans. Bottom line: the EV transformation will have a trillion-dollar impact on the economy — driven by the 30%-to-60%  energy efficiency gain of EVs over internal combustion engines.

Currently, there are over 160,000 fueling locations around the country such as gas stations and convenience stores. EV charging units, not individual locations, just a power connector, are estimated to be at around 36,000. What is important to note is that the majority of these legacy EV charging systems are Level 1 and Level 2 type requiring charge times of an hour to go 100 miles. These legacy EV charging systems are not conducive for vehicle commuting behavior. Who can wait an hour to charge their vehicle?

The trend is for next generation fast charge (FC) and extreme fast charge (EFC) EV charging systems that are capable of extending range and providing faster charge times more indicative of the average gas refueling time.  The limitation is that the number of FC and EFC charging locations is minute. Tesla operates over 20,000 Supercharger connections globally but only 908 physical US locations

The bottom line is that the buildout to support fast charging EVs will require extensive capital investment and generation capacity that is further complicated by managing distributed energy resources such as DC power conversion, energy storage and renewable energy.

While EVs are changing the utility landscape, digital transformation – where greater reliance is required by expanding data centers that consume substantially more energy than manufacturing facilities – is consuming energy at an even faster rate.  The economics of cloud computing, machine learning, AI chips, and analytics-driven business models are only accelerating this digital transformation and dependence on data centers. When one adds crypto currency mining to the mix, the utility grid will predictably undergo substantial change.  At current growth projections, Green Econometrics forecasts that EVs, data centers and crypto mining will require an additional 11% energy generation and grid capacity by 2027.